Стандартные типы данных

Материал из Deeptown Manual
Перейти к: навигация, поиск

В этой главе будут рассмотрены базовые типы данных, применяющиеся в языке К++. Большинство из них объявлены в стандартной библиотеке Gide, однако некоторые, например интервалы, описываются в системной библиотеке самого языка К++. Еще раз напомним Читателю, что в языке К++, стандартные типы данных не являются встроенными. Конечно, компилятор опирается на них при генерации кода, но это совершенно не означает, что их нужно воспринимать как что-то единожды определенное и неизменное. Как уже было показано в книге, как с точки зрения компилятора так и самой виртуальной машины, эти классы ничем не отличаются от обычных, пользовательских классов, когда дело касается их использования на высоком уровне. Если забежать вперед, то можно отметить, что на низком уровне они реализованы на языке C++ (из соображений производительности) и их интерфейсы представлены в стандартной библиотеке. Тем не менее, существует возможность их дополнения программистом-пользователем, что и было проделано в главах, посвященных расширениям. Разумеется, от этих классов возможно наследовать собственные классы, точно так же, как и от любых других. В этой главе мы рассмотрим стандартные типы данных с точки зрения их применения и укажем некоторые свойства которые не были упомянуты в ходе повествования.

Содержание

Целые числа

Основой всей арифметики являются числа. Для представления чисел в программах применяются классы, объекты которых выступают как хранилища значений. Существует несколько классов целых чисел, различающихся по длине охватываемого ими диапазона и по возможности указания знака:

Имя класса Нижняя граница Верхняя граница Размер в байтах
int -2147483648 2147483647 4
uint 0 4294967295 4
bigint -9223372036854775808 9223372036854775807 8
ubigint 0 18446744073709551615 8

Данные классы поддерживают все возможные арифметические операции, а так же имеют операторы преобразования друг в друга, а так же в строку и из строки. Однако, следует быть осторожным и не полагаться полностью на автоматическое приведение типов. В некоторых случаях, можно получить не те результаты, что ожидает программист. Например: <source lang=kpp> var i = 1; var j = "2"; println(i + j); println(j + i); </source>

В приведенном выше примере, объявлены две переменных: целочисленная i и переменная j, содержащая строку "2". При вычислении первой суммы происходит следующее: компилятор "видит", что необходимо посчитать сумму переменных i и j, которые для нас являются представлениями чисел 1 и 2. Но с точки зрения компилятора, это всего лишь две инстанции классов int и string соответственно.

Разбор выражения производится слева-направо, так же как его считает человек. Компилятор пытается найти в классе int оператор + с типом второго операнда, то есть string. Такого оператора в классе нет. Тогда компилятор смотрит, существует ли в классе string оператор приведения к типу int, либо к другому типу, для которого в классе int объявлен оператор +. Такой оператор находится, соответственно компилятор генерирует вызов оператора приведения для переменной j, а затем уже выполняется сам оператор +. Поэтому, сложение происходит численно, так как и ожидалось. Результат суммы будет соответствовать числу 3: <source lang=kpp> i + j = 1 + ("2" as int) = 1 + 2 = 3 </source>

Во втором случае, все происходит с точностью наоборот: первым операндом является строка, то есть инстанция класса string. В этом классе так же объявлен оператор +, но принимающий в качестве второго операнда строку. Этот оператор используется для конкатенации двух строк, при которой вторая строка дописывается в конец первой, то есть: <source lang=kpp> var s1 = "hello"; var s2 = "world"; println(s1 + s2); //результат: "hello" + "world" = "helloworld" </source>

В нашей сумме, вторым операндом является инстанция класса int, которая по вышеописанным правилам, будет приведена к типу string. Таким образом, операция суммы будет приведена к операции конкатенации строк "2" и "1", то есть результат выражения будет "21": <source lang=kpp> j + i = "2" + (1 as string) = "2" + "1" = "21" </source>


Приведенная проблема особенно опасна при использовании динамических переменных, поскольку в одном случае может произойти одна операция, а в другом другая. Поэтому, использовать динамические переменные следует очень осторожно. Если у вас нет уверенности относительно типа передаваемой переменной, лучше подстраховаться и произвести операцию явного преобразования к интересующему вас типу.

Числа с плавающей точкой

Для проведения сложных математических рассчетов, одних целых чисел недостаточно. Для представления действительных чисел, или чисел с плавающей точкой (запятой), как их называют в информатике, в стандартной библиотеке создан класс real, который на низком уровне представлен типом двойной точности (double).

В отличие от класса string, класс real корректно обрабатывается в сочетании с целочисленными классами. Например, следующие выражения дадут одинаковые результаты: <source lang=kpp> var i = 3 + 0.1415 var j = 0.1415 + 3 </source>

В результате, обе переменных будут иметь тип real и значение 3,1415. Это достигается тем, что в целочисленных классах есть специальные версии арифметических операторов, которые принимают в качестве параметра объекты класса real.

Логический тип

В некоторых случаях в программе бывает необходимо сохранять логическое значение. Это может потребоваться в алгоритмах, где такое значение используется в качестве флага, либо в свойствах объектов, которые подразумевают наличие или отсутствие некоторого признака. Это осуществляется с помощью булевых переменных и псевдотипа bool. Переменные булевого типа могут иметь только два значения: true, соответствующее истине и false, соответствующее лжи.

К переменным булевого типа могут приводиться значения более сложных выражений, например когда такое выражение находится в условии цикла. Правила преобразования значений выражений были описаны при рассмотрении условного оператора if.

Примечание: псевдотипом bool назван потому, что он не является классом в полной мере. Это абстракция, которая была введена в язык К++ для преодоления некоторых сложностей при проектировании языка. Переменные такого класса обрабатываются на уровне самого К++; с точки зрения Gide такого класса не существует (вернее, существуют специальные объекты @true и @false, но это тема, требующая отдельного обсуждения).

Существует несколько ограничений, которые важно понимать. Первое ограничение заключается в том, что от этого типа нельзя наследовать собственные классы. Второе ограничение проявляется в том, что переменные типа bool обрабрабатываются особым образом. Если в выражении присутствует переменная булевого типа, то операторы отношения работают немного по другому. Например, следующее выражение будет трактовано как истина: <source lang=kpp> if (0 == true)

  //...

</source>

Условие сработает потому что 0 представляет собой действительный, существующий объект, стало быть он истинен (об этом уже было написано). Вот другой пример, иллюстрирующий ту же проблему: <source lang=kpp> var MyClass c = new MyClass; if (c == true)

  //...

</source>

Подобное условие так же сработает (будет считаться истинным), поскольку оператор == в данном случае обрабаытвается самим компилятором. Конечно, приведенные примеры являются довольно странными с точки зрения обычного кода, но их все же следует иметь в виду при написании программ.

Строки

Для хранения и обработки строковых данных используется класс string. Он объявлен в стандартной библиотеке Gide и дополнен с помощью расширений в системной библиотеке К++.

В языке К++ предусмотрены два синтаксиса для объявления строковых констант, оба вида строк в конечном счете представляются одним и тем же классом string.

Строки, заключенные в двойные кавычки обрабатывают все escape последовательности, а так же позволяют использовать т. н. вставки, или подстановки — кусочки кода, которые вставляются непосредственно в тело строки и при работе программы заменяются на значение, возвращаемое этим кодом (см. ниже). Обрабатываются следующие последовательности:

Последовательность Значение
\n перенос строки
\r возврат каретки
\t символ табуляции
\" символ двойной кавычки
\\ символ обратного слеша
#{ } подстановка выражения

Подстановки это очень способ совмещать в одном выражении строку которую необходимо вывести и выражения, значение которых необходимо добавить к выводу. Получается что подстановки это что-то среднее между простой строкой и строкой для форматируемого вывода. Подстановка начинается с пары символов #{, которые должны идти друг за другом, без пробелов. То что идет дальше, воспринимается компилятором как выражение, как если бы оно было записано просто в коде, вне строки. Завершает подстановку соответствующая ей закрывающая фигурная скобка.

Приведем пример использования подстановок: <source lang=kpp> var s1 = "сумма чисел 2 и 3 равна #{2 + 3}."; print("s1 = #{s1}\n"); </source>

В результате выполнения этого кода, в выводе появится строка:

s1 = сумма чисел 2 и 3 равна 5.

Подстановки даже можно делать вложенными, например так:

var x = [ 1, 2, 3, 4, 5 ];
var s = "some weird stuff: #{ x.join(', ') { |idx,elem| "#{idx} = #{elem}"; } }\n";

При использовании вложенных подстановок существует одно ограничение. А именно, в вложенной строке не должно встречаться символа }. Имеется в виду одиночный символ закрывающей фигурной скобки, не имеющий свой пары.

Если требуется работать со строкой, которая содержит escape последовательности (или подстановки), которые не требуется обрабатывать то следует применять строки, заключенные в одинарные кавычки: <source lang=kpp> var s1 = 'в таких строках \n \r \t и #{подстановки} не обрабатываются'; </source> Исключением из правила являются последовательности \' и \\.


Класс string предоставляет пользователю широкий спектр различных методов, которые могут использоваться для работы со строками.

Длина строки

Для определения длины строки используется метод length(), который возвращает число символов в строке. Так же, существует метод empty() который возвращает истину если строка пуста и ложь в противном случае.

Выделение подстрок

Для выделения из исходной строки подстрок, разделенных символом или несколькими символвами разделителями, используется метод split(). В качестве параметра, этот метод принимает строку, либо регулярное выражение, соответствующие разделителю. Возвращает метод уже массив из полученных подстрок.

В качестве примера приведем два способа обработки URL строки и выделения из нее отдельных частей: <source lang=kpp> var url = "http://example.com?key1=value1&key2=value2&key3=value3"; var qm = url.find("?"); var args = url.substr(qm, url.length()); var pairs = args.split('&'); var options = new hash; pairs.each() { |pair|

   var kv = pair.split('='); 
   options[kv[0]] = kv[1]; 

}; </source>

С помощью метода find() мы находим позицию символа вопроса в исходной строке, который разделяет адрес на собственно адрес ресурса и на строку параметров запроса. Строка параметров состоит из множества пар значение=результат, отделенных друг от друга символом амперсанда. Выделив подстроку запроса, мы разделяем ее на подстроки с помощью метода split(), указывая амперсанд в качестве разделителя. Полученный массив подстрок мы сохраняем в переменной pairs. Теперь, мы заводим хеш options в который будем записывать параметры запроса, по мере его обработки. Выполняя перебор по всем парам, мы опять разделяем их на две части, на этот раз по символу равенства. Последним действием, полученная пара значение-результат сохраняется в хеше.

Несмотря на то, что вышеприведенный код работает, он является не очень эффективным. В процессе его работы создается много промежуточных переменных и может задействоваться большое количество памяти (при длинных строках запросов). При задачах обработки строк выгодно использовать регулярные выражения. Они позволяют относительно легко производить обработку строк; выполнять поиск и замену по некоторому шаблону. Приведем другой, более элегантный способ решения той же самой задачи, но уже с использованием регулярных выражений: <source lang=kpp> var options = new hash; if (url =~ `\?(.*)$`) {

   var pairs = $[1].split('&');
   pairs.each() { |pair|
       if (pair =~ `^([\w\d]+)=([\w\d]+)$`)
           options[$[1]] = $[2];
   };

} </source>

Операторы индексного доступа

Для доступа к отдельным символам строки может использоваться оператор индексного доступа []. При этом, строка представляется как массив, где каждая буква соответствует элементу массива: <source lang=kpp> var str = "Hello world"; var s1 = str[0] + str[6]; // s1 = "Hw" </source>

Так же как и в массивах, для индексирования или целых подстрок могут применяться интервалы: <source lang=kpp> var s2 = str[0 .. 4]; // s2 = "Hello" </source>

Возможно так же использовать оператор индексного доступа для присвоения значения отдельным подстрокам. Это осуществляется с помощью оператора []=: <source lang=kpp> var greeting = "Welcome to the real world, Neo."; greeting['real world'] = 'matrix'; // Welcome to the matrix, Neo. greeting[15 .. 20] = 'Deeptown'; // Welcome to the Deeptown, Neo. greeting[-1] = '!'; // Welcome to the Deeptown, Neo! greeting[`\sNeo.$`] = 'Leonid'; // Welcome to the Deeptown, Leonid! </source>

В примере выше применены четыре способа индексного доступа для изменения строки, соответствующие четырем различным операторам (точнее, четырем версиям перегруженного оператора). В первом случае используется доступ по подстроке. При этом подстрока будет "вырезана" из строки, а на ее место будет вставлена присваиваемая строка. Таким образом, эта операция не зависит от размера искомой и заменяемой подстрок (если заменяемая строка длиннее, исходная строка будет "раздвинута").

Во втором случае осуществляется доступ по интервалу. Символы с индексами в диапазоне 15-20 соответствуют слову "matrix". Замена опять же производится по правилу "вырезания" подстроки с последующим "склеиванием".

В третьем случае используются отрицательные индексы для указания того, что отсчитывать символы нужно с конца строки. Соответственно, -1 соответствует последнему символу, -2 второму с конца и т. д.

Наконец, в последней замене применяется регулярное выражение, для поиска подстроки.


Примечание: Методы замены через оператор []= на деле являются обертками к соответствующим реализациям метода replace_all(). При этом, будут производиться замены всех включений подстроки в исходную строку (разумеется, кроме случаев ин тервала и одиночного индекса). Если вы хотите заменить только одно включение, — используйте методы replace()

Интервалы

Массивы и списки

Хеши

Указатели

Персональные инструменты
Пространства имён

Варианты
Действия
Навигация
информация
документация
Инструменты